Skip to main content
Log in

Study and Simulation of Nanoparticle Translocation Through Cell Membrane

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this research, nanoparticle translocation through cell membrane has been studied and simulated. To this end, gold nanoparticles have been selected as the main carrier of the drug and have been functionalized with some selected ligands. The partial charges of the ligands have been calculated using quantum mechanics based on HF technique with 6-31Gd basis set. To achieve the realistic shape of a drug, the number and arrangement of ligands loaded on the gold nanoparticle have been optimized. After determining the properties such as diffusion coefficient and validating the results with experimental data, a MARTINI coarse-grained mapping of the drugs is created. The coarse-grained model of the drug has been placed in a cellular microenvironment containing a solvent. The cytoplasmic membranes investigated in this study consists of more than 60 types phospholipids similar to animal cell membranes. After minimizing the system and performing procedures for controlling temperature and pressure, ions are added to the system and a potential difference is applied to the membrane and translocation of the drug is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Arias JL (2014) Nanotechnology and drug delivery, volume one: nanoplatforms in drug delivery, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Google Scholar 

  • Bardají M, Uznanski P, Amiens C, Chaudret B, Laguna A (2002) Aurophilic complexes as gold atom sources in organic media. Chem Commun 6:598–599

    Google Scholar 

  • Beik J, Khateri M, Khosravi Z, Kamrava SK, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A (2019) Gold nanoparticles in combinatorial cancer therapy strategies. Coord Chem Rev 387:299–324

    Google Scholar 

  • Belloni J (1996) Metal nanocolloids. Curr Opin Colloid Interface Sci 1(2):184–196

    Google Scholar 

  • Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8(9):3257–3273

    Google Scholar 

  • Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416

    Google Scholar 

  • Carrot G, Valmalette JC, Plummer CJG, Scholz SM, Dutta J, Hofmann H, Hilborn JG (1998) Gold nanoparticle synthesis in graft copolymer micelles. Colloid Polym Sci 276(10):853–859

    Google Scholar 

  • Chen W, Cai WP, Liang CH, Zhang LD (2001) Synthesis of gold nanoparticles dispersed within pores of mesoporous silica induced by ultrasonic irradiation and its characterization. Mater Res Bull 36(1–2):335–342

    Google Scholar 

  • Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9(3):1080–1084

    Google Scholar 

  • Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Controll Release 148(2):135–146

    Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Google Scholar 

  • Du Y, Xia L, Jo A, Davis RM, Bissel P, Ehrich MF, Kingston DG (2018) Synthesis and evaluation of doxorubicin-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjug Chem 29(2):420–430

    Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Google Scholar 

  • Gomez S, Philippot K, Collière V, Chaudret B, Senocq F, Lecante P (2000) Gold nanoparticles from self-assembled gold (i) amine precursorsElectronic supplementary information (ESI) available: experimental details and full characterization of complexes 2–4, powder XRD spectra of 2 and TEM micrographs of 2 and gold nanoparticles. Chem Commun 19:1945–1946

    Google Scholar 

  • Ingólfsson HI, Melo MN, Van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, De Vries AH, Tieleman DP, Marrink SJ (2014a) Lipid organization of the plasma membrane. J Am Chem Soc 136(41):14554–14559

    Google Scholar 

  • Ingólfsson HI, Melo MN, Van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, De Vries AH, Tieleman DP, Marrink SJ (2014b) Lipid organization of the plasma membrane. J Am Chem Soc 136(41):14554–14559

    Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13(7):2313–2322

    Google Scholar 

  • Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519

    Google Scholar 

  • Lattes A, Rico I, De Savignac A, Samii AAZ (1987) Formamide, a water substitute in micelles and microemulsions xxx structural analysis using a diels-alder reaction as a chemical probe. Tetrahedron 43(7):1725–1735

    Google Scholar 

  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444

    Google Scholar 

  • Lin J, Alexander-Katz A (2013) Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano 7(12):10799–10808

    Google Scholar 

  • Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9):5421–5429

    Google Scholar 

  • Lin JQ, Zheng YG, Zhang HW, Chen Z (2011) A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers. Langmuir 27(13):8323–8332

    Google Scholar 

  • Lodish H, Darnell JE, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular cell biology. Macmillan, New York

    Google Scholar 

  • Luedtke WD, Landman U (1998) Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites. J Phys Chem B 102(34):6566–6572

    Google Scholar 

  • Mahaffy R, Bhatia R, Garrison BJ (1997) Diffusion of a butanethiolate molecule on a Au 111 surface. J Phys Chem B 101(5):771–773

    Google Scholar 

  • Mandal S, Phadtare S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5(2):118–127

    Google Scholar 

  • Mangadlao JD, Wang X, McCleese C, Escamilla M, Ramamurthy G, Wang Z, Govande M, Basilion JP, Burda C (2018) Prostate-specific membrane antigen targeted gold nanoparticles for theranostics of prostate cancer. ACS Nano 12(4):3714–3725

    Google Scholar 

  • Meltzer S, Resch R, Koel BE, Thompson ME, Madhukar A, Requicha AA, Will P (2001) Fabrication of nanostructures by hydroxylamine seeding of gold nanoparticle templates. Langmuir 17(5):1713–1718

    Google Scholar 

  • Moessmer S, Spatz JP, Moeller M, Aberle T, Schmidt J, Burchard W (2000) Solution behavior of poly (styrene)-B lock-poly (2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 33(13):4791–4798

    Google Scholar 

  • Nangia S, Sureshkumar R (2012) Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 28(51):17666–17671

    Google Scholar 

  • Obayemi JD, Hu J, Uzonwanne VO, Odusanya OS, Malatesta K, Anuku N, Soboyejo WO (2017) Adhesion of ligand-conjugated biosynthesized magnetite nanoparticles to triple negative breast cancer cells. J Mech Behav Biomed Mater 68:276–286

    Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751

    Google Scholar 

  • Pishkenari HN, Yousefi FS, Taghibakhshi A (2018) Determination of surface properties and elastic constants of FCC metals: a comparison among different EAM potentials in thin film and bulk scale. Mater Res Express 6(1):015020

    Google Scholar 

  • Pol VG, Gedanken A, Calderon-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15(5):1111–1118

    Google Scholar 

  • Ren F, Bhana S, Norman DD, Johnson J, Xu L, Baker DL, Parrill AL, Huang X (2013) Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjug Chem 24(3):376–386

    Google Scholar 

  • Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3(4):257–261

    Google Scholar 

  • Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7):1979

    Google Scholar 

  • Siu SW, Pluhackova K, Böckmann RA (2012) Optimization of the OPLS-AA force field for long hydrocarbons. J Chem Theory Comput 8(4):1459–1470

    Google Scholar 

  • Tiwari PK, Soo Lee Y (2013) Gene delivery in conjunction with gold nanoparticle and tumor treating electric field. J Appl Phys 114(5):054902

    Google Scholar 

  • Van Lehn RC, Alexander-Katz A (2013) Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations. J Phys Chem C 117(39):20104–20115

    Google Scholar 

  • Vinod M, Jayasree RS, Gopchandran KG (2017) Synthesis of pure and biocompatible gold nanoparticles using laser ablation method for SERS and photothermal applications. Curr Appl Phys 17(11):1430–1438

    Google Scholar 

  • Wang T, Bai J, Jiang X, Nienhaus GU (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6(2):1251–1259

    Google Scholar 

  • Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579

    Google Scholar 

  • Yang YSS, Moynihan KD, Bekdemir A, Dichwalkar TM, Noh MM, Watson N, Melo M, Ingram J, Suh H, Ploegh H, Stellacci FR (2019) Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater Sci 7(1):113–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nejat Pishkenari.

Appendix

Appendix

See Figs. 25, 26, 27, 28, 29 and Tables 8, 9, 10, 11, 12, 13.

Fig. 25
figure 25

Percentage of the phospholipids constitute the cell membrane (those with percentages more than 2%)

Fig. 26
figure 26

Coarse-grained cell membrane used in the simulations (the periodic boundary condition is applied to the two surface directions)

Fig. 27
figure 27

Partial load obtained by GAUSSIAN software. Atom name and charge are written on each atom, and the atoms are colored according to the load

Fig. 28
figure 28

Energy stability in all-atomic simulation of gold nucleus with ligand SC12H24NH +3 . In this simulation, the temperature reached from 250 to 310 K

Fig. 29
figure 29

Temperature equilibration in all-atomic simulation of gold nucleus with ligand SC2H24NH3+. In this simulation, the temperature reached from 250 to 310 K

Table 8 Partial charges on SC8H16NH3+ atoms in related drug
Table 9 Partial charges in all-atomic simulation with SC12H24NH3+ ligand
Table 10 Partial charges in all-atomic simulation with SC16H32NH3+ ligand
Table 11 The average distances between the atoms of SC8H24NH3+ ligand and the center of the gold core
Table 12 The average distances between the atoms of SC8H24NH3+ ligand and the center of the gold core
Table 13 The average distances between the atoms of SC16H32NH3+ ligand and the center of the gold core

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejat Pishkenari, H., Barzegar, M.R. & Taghibakhshi, A. Study and Simulation of Nanoparticle Translocation Through Cell Membrane. Iran J Sci Technol Trans Mech Eng 45, 939–960 (2021). https://doi.org/10.1007/s40997-019-00326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-019-00326-8

Keywords

Navigation